
LAB Asprise! Technical Library 

JAVA DEVELOPER’S GUIDE TO 

ASPRISE JT WAIN 

Version 9 
 

 
 
 
 

Last updated on January, 2006 
 

ALL RIGHTS RESERVED BY LAB ASPRISE! © 1998, 2006. 



LAB Asprise!  Asprise JTwain Developer’s Guide 

 

Table of Contents 
 

1 INTRODUCTION..........................................................................................4 

1.1 ABOUT TWAIN .....................................................................................4 
1.2 ABOUT JTWAIN .....................................................................................4 
1.3 COMPONENTS OF JTWAIN ......................................................................4 
1.4 JTWAIN SDK INSTALLATION ...................................................................5 
1.5 FILE ORGANIZATION ..............................................................................5 
1.6 DEVELOPMENT ENVIRONMENT SETUP .....................................................6 
1.7 COMPATIBILITY......................................................................................6 

2 IMAGE ACQUISITION WITH JT WAIN ..........................................................7 

2.1 FOR THE IMPATIENT...............................................................................7 

3 CONTROL FLOW OF A T YPICAL IMAGE ACQUISITION PROCESS .............9 

3.1 GETTING A SOURCE...............................................................................9 
3.1.1 Gets the default Source........................................................................10 
3.1.2 Lets the user select a Source ...............................................................10 
3.1.3 Selects source by its name...................................................................10 
3.1.4 Get all the Sources available................................................................10 
3.1.5 Validating a Source: .............................................................................11 

3.2 HIDING THE USER INTERFACE...............................................................11 
3.2.1 Hiding the “Select Source” UI: ..............................................................11 
3.2.2 Hiding the scanner/digital camera's acquisition UI: ..............................11 
3.2.3 Hiding the indicators' UI:.......................................................................11 

3.3 SETTING AND GETTING SOURCE CAPABILITIES.......................................12 

4 ACQUIRING IMAGES .................................................................................14 

4.1 AUTOMATIC DOCUMENT FEEDING (ADF)...............................................14 
4.2 SAVING ACQUIRED IMAGES INTO FILES..................................................15 

4.2.1 Built-in Image Saving Functions ...........................................................15 
4.2.2 Sample Code........................................................................................15 

4.3 ACQUIRING A SPECIFIED REGION ONLY.................................................17 
4.4 UPLOADING ACQUIRED IMAGES TO WEB SERVERS .................................18 
4.5 ABOUT THE JTWAIN WEB APPLET .........................................................19 

5 LOW LEVEL API PROGRAMMING ..............................................................20 

5.1 JTWAIN API MODEL ............................................................................20 

 
Page 2 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

5.2 EXTENDING THE SOURCE.....................................................................20 
5.3 TWAIN & JTWAIN MAPPING.................................................................22 

5.3.1 Containers ............................................................................................22 
5.3.2 Item Types............................................................................................22 

6 ADVANCED TOPICS...................................................................................24 

6.1 EXCEPTION HANDLING .........................................................................24 
6.2 USING JTWAIN IN THREADS..................................................................25 
6.3 SOFTWARE PACKAGING AND DISTRIBUTION ...........................................25 

7 DEPLOYMENT GUIDE................................................................................27 

7.1 ORGANIZING YOUR DIRECTORY.............................................................27 
7.2 CREATING A JAR FILE ..........................................................................28 
7.3 CREATING SIGNED APPLETS ................................................................28 

7.3.1 Creating a Certificate............................................................................29 
7.3.2 Signing Jar Files ...................................................................................29 
7.3.3 Launching the Applet............................................................................30 

8 IMAGE ACQUISITION COMPONENTS .......................................................31 

8.1 JIMAGEDIALOG ...................................................................................31 
8.1.1 Advantages...........................................................................................32 
8.1.2 Sample Uses ........................................................................................32 
8.1.3 Supported Image Formats....................................................................34 
8.1.4 Compatibility .........................................................................................35 
8.1.5 Software Packaging and Distribution....................................................35 

8.2 JIMAGEFILECHOOSER .........................................................................35 
8.2.1 Sample Use ..........................................................................................36 
8.2.2 Supported Image Formats....................................................................36 
8.2.3 Compatibility .........................................................................................36 
8.2.4 Software Packaging and Distribution....................................................36 

9 SUPPORT AND PROFESSIONAL SERVICES ...............................................37 

9.1 SUPPORT WEB SITE ............................................................................37 
9.2 BASIC SUPPORT..................................................................................37 
9.3 PREMIUM SUPPORT SERVICES .............................................................37 
9.4 PROFESSIONAL SERVICES....................................................................37 

 
 
 
 
 

 
Page 3 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

1 Introduction 

1.1 About T WAIN 
The TWAIN initiative was originally launched in 1992 by leading industry vendors who 
recognized a need for a standard software protocol and applications programming 
interface (API) that regulates communication between software applications and 
imaging devices (the source of the data). TWAIN defines that standard. Most of 
scanners and digital cameras on market are TWAIN compatible. For more information, 
visit: www.twain.org 

1.2 About JTwain 
JTwain is the Java counterpart of TWAIN. It is a TWAIN suite developed by LAB 
Asprise! since 1998. It is 100% TWAIN (most updated version 1.9) compatible. JTwain 
enables Java developers to acquire images from scanners and digital cameras easily. 
Its universal APIs bridge Java and scanners, digital cameras tightly. With more than 
five years extensive development, LAB Asprise! proudly presents you the long waiting 
version 9 of JTwain.  

1.3 Components of JTwain 
JTwain comprises two components:  

 A native library: AspriseJTwain.dll 
 Several Java packages: 

 com.asprise.util.jtwain - main package; contains essential classes to perform 
image acquisition 

 com.asprise.util.jtwain.lowlevel – low-level APIs for advanced development of 
TWAIN applications 

 com.asprise.util.ui – optional UI components 
 com.asprise.util.jtwain.web – classes for uploading images to web servers 

 

 
Page 4 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

1.4 JTwain SDK Installation 
First, make sure that you have already installed Java runtime version 1.2 or above on 
your system. Currently, JTwain only support the following OSs: Windows 98, NT, ME, 
2000, XP and all Windows Server platforms. Other OSs are planed.  
 
Download a copy of JTwain installation file from http://www.asprise.com/product/jtwain. 
Unzip the SDK kit to a folder, which we will refer as JTWAIN_HOME. 
 
After the installation, double click LaunchDemo.bat to test your installation. Select 
‘TestJTwain’ and click ‘Launch!’ button to test JTwain. You should see some output 
looks like this: 
 

1. Executing TestJTwain ...  
2. ----------- JTWAIN TEST ----------- 
3.  
4. Testing results:  
5. --- MESG) System Java VM Version: 1.4.2_01-b06 
6. --- MESG) JTWAIN Supports Java 1.2 and above. 
7.  
8. --- MESG) JTWAIN DLL version: 9 EVALUATION / LICENSED 
9. --- OK) Source manager has been successfully loaded.  
10.  
11. --- OK) Source #0: Source: Microtek ScanWizard 
12. --- OK) Source #1: Source: TWAIN_32 Sample Source 
13.  
14. ----------- END OF TEST ----------- 

 
A proper installation results no ERROR messages.  
 

1.5 File Organization  
The file organization of JTwain SDK distribution is as follows:  
 
JTWAIN_HOME 
+--- AspriseJTwain-DevGuide.pdf [Developer's Guide] 
+--- api [Java docs] 
+--- AspriseJTwain.dll [The sole native library] 
+--- JTwain.jar [Contains all JTwain classes]  
+--- demo.jar [Contains binary class files and source code for demo programs] 

 
Page 5 of 37 

http://www.asprise.com/product/jtwain


LAB Asprise!  Asprise JTwain Developer’s Guide 

+--- demo-src.jar [Contains the source code for all the demo programs] 
+--- LaunchDemo.bat [Launches JTwain demo programs] 
+--- applet.html [Launches the JTwain Web Demo applet] 
+--- LICENSE-*.txt [License agreement] 
+--- Purchase.htm [Click to order JTwain] 
 

1.6 Development Environment Setup 
After you have installed JTwain, you need to setup your development environment in 
order to develop Java applications with JTwain. You need: 
 
1) Put JTwain.jar into your class path.  
2) Put AspriseJTwain.dll into your system path, e.g., C:\Windows\System32. 
 
If you only want to see JTwain demos, then you do not have to perform this step.  
For more information, please refer the 'Software Distribution' section. 

1.7 Compatibility 
Operating Systems: All Windows platforms are currently supported; other OSs 
planned. 
Java Runtime: Version 1.2 or above. 

 
Page 6 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

2 Image Acquisition with JTwain 

2.1 For the Impatient 
The following code demonstrates the basic usage of JTwain: 
 
1. try { 

2.        Source source = 

SourceManager.instance().getDefaultSource(); 

3.        source.open(); 

4.        Image image = source.acuqireImage(); 

5.        ... // Uses image here ... 

6.   }catch(Exception e) { 

7.        e.printStackTrace(); 

8.  }finally{ 

9.        SourceManager.closeSourceManager(); 

10. }  

 
Line 2: SourceManager represents TWAIN source manager, which manages and 
controls all the data(image) sources, e.g. scanners, digital cameras, available on the 
operating system. There can be one and only one SourceManager at any time. A 
default Source is obtained by calling SourceManager's getDefaultSource method.  
 
Line 3: Opens the Source. 
 
Line 4: Acquires an Image from the opened Source. Now, the Image has been 
acquired, and it can be used as other Images in your applications. 
 
Line 9 closes any open SourceManager (which closes any open Source) regardless 
whether there are exceptions thrown. 
 
To execute the above lines, you have to import: 
com.asprise.util.jtwain.SourceManager and com.asprise.util.jtwain.Source. 
For a complete sample application, please refer to DemoSimple.java (in demo-src.jar).  
 
Note: You need at least one source to run the demo programs. If you do not have any 
sources, download and install the sample TWAIN Source provided by twain.org at: 

 
Page 7 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

http://www.twain.org/devfiles/twainkit.exe  
 
TIP: Source code for all demo programs are in the file demo-src.jar. 

 
Page 8 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

3 Control Flow of a Typical Image 

Acquisition Process 

 
 
The figure above shows the control flow of a typical image acquisition process. In last 
section, basic code for image acquisition has been presented. You will notice that this 
flow clearly illustrates that code, except that:  

 Getting and setting capabilities are not used – we will introduce this in later 
sections.  

 In stead of explicitly closing the opened Source, SourceManager is closed – which 
causes any opened Source close.  

3.1 Getting a Source  
Source, or data source, is an abstraction of an image source – which can be a scanner, 
a digital camera or an image database.  
 
There are many ways to get a Source from the SourceManage: 
 

 
Page 9 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

3.1.1 Gets the default Source 

1. Source source = SourceManager.instance().getDefaultSource(); 

 
SourceManager will return the default Source or null if no data source exists.  
If you do not have any TWAIN compatible scanner or digital camera, you can try the 
sample TWAIN Source provided by twain.org at: 
http://www.twain.org/devfiles/twainkit.exe  

3.1.2 Lets the user select a Source  

1. Source source = SourceManager.instance().selectSourceUI(); 

 
A dialog will pop up to enable the user to select a Source. Run LaunchDemo.bat and 
select DemoSelectSourceDialog to see the demo. You will see the following pop up 
(the contents may be different): 
 

 
 

3.1.3 Selects source by its name 

1. Source source = SourceManager.instance().selectSource(“Big 

Camera”); 

 
A Source will be returned if there is a Source with the specified name, null otherwise.  

3.1.4 Get all the Sources available 

1. Source sources[] = SourceManager.getAllSources(); 

 

 
Page 10 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

An array containing all the data sources will be returned.  

3.1.5 Validating a Source:  

1. Source validateSource = SourceManager.selectSource(source); 

 
If the source is a valid Source, a new Source object representing the same data Source 
is returned possible with more detailed information; otherwise, null will be returned. 

3.2 Hiding the User Interface 

3.2.1 Hiding the “Select Source” UI:  

Instead of using method (3.1.2) in Getting a Source, try to use other methods, like 
(3.1.1), (3.1.3), (3.1.4).  

3.2.2 Hiding the scanner/digital camera's acquisition 

UI: 

Before performing image acquisition, a Source should be called on the following 
method:  
 
1. if(source.isUIEnabled())  

2.    source.setUIEnabled(false); 

3.2.3 Hiding the indicators' UI: 

Some Sources may pop up indicator dialogs to show the progress of image acquisition. 
To turn them off:  
 
1. source.setIndicators(false); 

 
The above line set the source's capability CAP_INDICATORS to off. To learn more 
about capabilities, see next section.  

 
Page 11 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

 
Run DemoHiddenUI to see hidden-UI image acquisition from the default Source in 
action.  

3.3 Setting and Getting Source 
Capabilities 

One of TWAIN’s benefits is it allows applications to easily interact with a variety of 
acquisition devices. Developers of applications need to be aware of a Source’s 
capabilities and may influence the capabilities that the Source offers to the 
application’s users. To do this, the application can perform capability negotiation. 
Some sample capabilities are: CAP_XFERCOUNT – indicating number of images the 
application is willing to accept, ICAP_XRESOLUTION - X-axis resolution of the 
Source.  
 
When all the UIs have been hidden, setting and getting the Source's capabilities are 
extremely important. Setting and getting source capabilities should be done after the 
source has been opened and before performing the image acquisition. Thanks to 
JTWAIN, you do not have to go into dirty details of those capabilities. We have 
implemented proper operations for every capability that required by TWAIN 1.9 
specification.  
 
In last section, CAP_INDICATORS has been set by calling method setIndicators. Here, 
we use CAP_XFERCOUNT as an example to explain setting and getting capabilities in 
details:  
 
 

Method in Source  Remarks 

getTransferCount 
Return the Capability (CAP_XFERCOUNT)'s valid 
value(s) including current and default values. 
[Corresponding to TWAIN: MSG_GET] 

getCurrentTransferCount 
Get the Capability’s current value. [Corresponding to 
TWAIN: MSG_GETCURRENT] 

getDefaultTransferCount 
Get the Capability’s preferred default value (Source 
specific). Corresponding to TWAIN: 
MSG_GETDEFAULT] 

resetTransferCount 
Change a Capability’s current value to its TWAIN-defined 
default. [Corresponding to TWAIN: MSG_RESET] 

 
Page 12 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

Method in Source  Remarks 

setTransferCount 
Change a Capability’s current and/or available value(s). 
[Corresponding to TWAIN: MSG_SET] 

 
For a complete list of all capabilities, please refer the TWAIN specification at: 
http://www.twain.org/docs/Spec1_9_197.pdf  
 
Demo program DemoGetCapabilities prints all the capabilities that the selected Source 
supports.  

 
Page 13 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

4 Acquiring Images 

Acquire an image using JTwain is as easy as:  
 
1. java.awt.Image image = source.acquireImage(); 

 
To load the image completely:  
 
1. MediaTracker tracker = new MediaTracker(this); 

2. tracker.addImage(this.image, 1); 

3.    

4. try { 

5.     tracker.waitForAll(); 

6. }catch(Exception e) { 

7.     e.printStackTrace(); 

8. } 

 
Then you can proceed to acquire another image. For a complete sample application, 
see DemoSelectSourceDialog – DemoSelectSourceDialog.java and 
ImageDisplayer.java.  
 
New Features:  
In addition to the acquireImage method, there is another one named 
acquireImageAsBufferedImage. The acquireImageAsBufferedImage method acquires 
an image into a BufferedImage. 

4.1 Automatic Document Feeding (ADF) 
JTwain makes it easy to perform automatic document feeding. The following code 
illustrates an automatic document feeding process:  
 
1. source.open(); 

2. source.setUIEnabled(true); 

3.  

4. int counter = 1; 

5. do { 

6.    Image image = source.acquireImage(); 

 
Page 14 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

7.    // Uses image here ... 

8. }while(source.hasMoreImages()); 

 
If the data Source supports ADF, the user can enable ADF and set number of 
documents intending to acquire. Run DemoADF to see how ADF acquisition works. 
 
To perform ADF without UI, replace the above code Line 2 with the following code:  
 
1. source.setUIEnabled(false); 

2. source.setFeederEnabled(true); 

3. source.setAutoFeed(true); 

4. source.setTransferCount(3); 

 
Modify DemoADF.java to run ADF without UI.  
 
Note: unfortunately, many scanners does not support ADF without UI. Please perform 
thorough test if you want to use ADF in UI disabled mode. 
 

4.2 Saving Acquired Images into Files 

4.2.1 Built-in Image Saving Functions 

From version 8.2, you can using the following built-in image saving functions: 
 
public InputStream outputLastAcquiredImageAsJPEG() 
 
public File saveLastAcquiredImageIntoTemporaryFile() 
 
public void saveLastAcquiredImageIntoFile(String destination) 
 
public void saveLastAcquiredImageIntoFile(File destination) 

4.2.2 Sample Code 

1. public class DemoSaveJPEG extends JTwainDemoCode{ 

2.   

3.  public DemoSaveJPEG() { 

4.    

 
Page 15 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

5.     try { 

6.  

7. Source source = SourceManager.instance().getDefaultSource(); 

8.     

9.  if(source == null) { 

10.   error("There is no (default) source on the system!"); 

11.   return; 

12.  } 

13.  
14.  source.open(); 

15.    

16.  Image image = source.acquireImage(); 

17.     

18.  ImageDisplayer imageDisplayer =  

19.    new ImageDisplayer("DemoSimple", image); 

20.     

21.  FileDialog fileDialog = new 

FileDialog(imageDisplayer.getFrame(), "Save the image acquired into 

a file: ", FileDialog.SAVE); 

22.  fileDialog.show(); 

23.     

24.  source.saveLastAcquiredImageIntoFile(new  

25.      File(fileDialog.getDirectory(), fileDialog.getFile())); 

26.  
27.  source.close(); 

28.     

29.  }catch(Exception e) { 

30.     exception(e); 

31.  }finally{ 

32.     SourceManager.closeSourceManager(); 

33.  } 

34. } 
35.  
36.   public static void main(String[] args) { 
37.   new DemoSaveJPEG(); 

38.   } 
39. } 

 
The code above can run on any JRE with version 1.2 and above. Additionally, if you are 
using Java version 1.4 or about, you can use the ImageIO class to write the acquired 
images into various formats. For example,  
 
1. import java.awt.*; 

2. import java.awt.image.*; 

 
Page 16 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

3. import java.io.*; 

4. import javax.imageio.*; 

5.  

6. import com.asprise.util.jtwain.*;  

7.  

8. ... 

9.  

10. try { 
11.  
12.     Source source = SourceManager.instance().getDefaultSource(); 
13.     source.open(); 
14.  
15.     BufferedImage image = source.acquireImageAsBufferedImage(); // 

Acquire the image 

16.  
17.     // Save the image as a PNG file 
18.     ImageIO.write(image, "png", new File("C:\\test.png");  
19.    

20.     // Save it as a JPEG file 
21.     ImageIO.write(image, "jpg", new File("C:\\test.jpg");  
22.      
23. }catch(Exception e) { 
24.     e.printStackTrace(); 
25. }finally{ 
26.     SourceManager.closeSourceManager(); 
27. }  

4.3 Acquiring a Specified Region Only 
In some cases, you want to acquire a region/part of the page only: 

 

 
Page 17 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

You use the setRegion method to tell the scanning device to scan the specified region 
only: 
 
1. source.setRegion(0, 0, source.getPhyscialWidth()/2, 

source.getPhysicalHeight()/2); 

 
If your scanner does not support this feature, you have to scan the whole page and 
crop it after you acquire it. 

4.4 Uploading Acquired Images to Web 
Servers 

Warning: this is a feature of JTwain Web Applet, you must purchase a proper license 
for it before you can start using it. You can either purchase JTwain Web Applet license 
or JTwain Site Developer license.  
 
For the demo of JTwain acquisition and uploading in action, please visit:  
http://asprise.com/product/jtwain/applet/ 
A typical uploading web page is shown below: 
 

 
 
The user browses a file and clicks the upload button to upload the selected file. The 
HTML code behind it is: 
 
1. <form method='post' enctype='multipart/form-data'  

2.   action='/product/jtwain/applet/fileupload.php?method=upload'> 

3.  

4.   <input type='file' name='file[]' style='width: 300'> 

5.   <input type='hidden' name='testParam' value='testValue'> 

6.   <input type='submit' value='Upload'></td> 

7.  

8. </form> 

 
With JTwain, you can use the code below to perform the exact same uploading action: 
 
1.  // Acquire image first  

2.  ... 

 
Page 18 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

3.  File acquiredImage = 

source.saveLastAcquiredImageIntoTemporaryFile(); 

4.  

5. FileUploader fileUploader = new FileUploader(); 

6.  

7. // fileUploader.setProxyHost(proxyHost); 

8. // fileUploader.setProxyPort(port); 

9.   

10. Properties extraParameters = new Properties(); 
11. extraParameters = new Properties(); 
12. extraParameters.put(“testParam”, “testValue”); 
13.  
14. fileUploader.upload( 
15.  

“http://asprise.com/product/jtwain/applet/fileupload.php?method=

upload”, 

16. “file[]”,  
17. “scanned.jpg”, acquiredImage, extraParameters); 
18. // If no exception thrown, upload succeeds.  

 

4.5 About the JTwain Web Applet 
On the first tab “JTwain Configuration”, you can check your JTwain dll version or install 
the JTwain dll file to your system.  
 
If the JTwain version is fine, you can proceed to the second tab to acquired images; 
 
After an image has been acquired, you can use the third tab to upload it to your web 
server.  
 
Specify your extra parameters if any in the text field next to “Extra Params” in the 
following format: 
param1=value1;param2=value2;param3=value3 
 

 
Page 19 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

5 Low level API Programming 

5.1 JTwain API Model 
JTwain has provided all TWAIN specification v1.9 mandatory capabilities negotiation 
operations. Besides them, some useful optional capabilities negotiation operations 
have been implemented too. If you need to deal with some less frequently used 
capabilities or you prefer to have total control on capabilities negotiation, the good 
news that JTwain exposes low level APIs which you can use to accomplish your tasks.  

5.2 Extending the Source 
Suppose you need to do ICAP_BITDEPTHREDUCTION capability negotiation. 
(ICAP_BITDEPTHREDUCTION is the capability controling Reduction Method the 
Source should use to reduce the bit depth of the data.) 
On page 9-425 of Twain specification v1.9:  
 
Values 
 Type:   TW_UINT16 
 Default Value:  No Default 
 Allowed Values:  TWBR_THRESHOLD  0 
   TWBR_HALFTONES   1 
   TWBR_CUSTHALFTONE 2 
   TWBR_DIFFUSION   3 
 Container for MSG_GET: TW_ENUMERATION 
   TW_ONEVALUE 
 Container for MSG_SET: TW_ENUMERATION 
   TW_ONEVALUE 
 
Now, you can extend the Source class to add this capability handling.  
 
1. public class MySource extends com.asprise.util.jtwain.Source  

2. { 

3.   public MySource(Source source)  

4.   { 

 
Page 20 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

5.     if(source == null ||  

6.        (source.getSourceName() == null && source.getIdentity == 

null))  

7.        throw new IllegalArgumentException(“source should not be 

null!”); 

8.  

9.     this.sourceName = source.getSourceName(); 

10.     this.identity = source.getIdentity(); 
11.  } 
12.   
13.  // Get value(s). 
14.  public int[] getBitDepthReduction()  
15.      throws InvalidStateException, OperationException  
16.  { 
17.    Object ret = getCapability(MSG_GET, ICAP_BITDEPTHREDUCTION,  
18.                                TWON_DONOTCARE16); 
19.    return getIntArray(ret); 
20.  } 
21.   
22.  // Set one value.  
23.  public void setBitDepthReduction(int value)  
24.      throws InvalidStateException, OperationException  
25.  { 
26.    ValueContainerOneValue c = new ValueContainerOneValue(); 
27.    ItemTypeInteger item = new ItemTypeInteger(TWTY_UINT16, value); 
28.    c.setItem(item); 
29.    setCapability(ICAP_BITDEPTHREDUCTION, c); 
30.  } 
31.   
32.  // Set multiple values.  
33. public void setBitDepthReduction(int[] values)  
34.      throws InvalidStateException, OperationException  
35.  { 
36.    if(values == null || values.length == 1) 
37.       throw new IllegalArgumentException(“Empty values!”); 
38.  
39.    ValueContainerEnumeration c = new  ValueContainerEnumeration(); 
40.    for(int i=0; i<values.length; i++)  
41.       c.pushItem(new ItemTypeInteger(TWTY_UINT16, values[i])); 
42.     
43.    setCapability(ICAP_BITDEPTHREDUCTION, c); 
44.  } 
45.   
46.  // Sample use.  

 
Page 21 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

47.  public static void main(String args[]) throws Exception  
48.  { 
49.    Source source = SourceManager.instance().selectSourceUI(); 
50.    source.open(); 
51.     
52.    MySource mine = new MySource(source); 
53.    mine.setBitDepthReduction(1); 
54.    Image image = mine.acquireImage(); 
55.     
56.    ... 
57.  } 

    
 
Line 17 getCapability returns the capability inquiry result. Some examples: if the 
container is of the type ValueContainerOneValue and item type is TWTY_UINT16, 
then a Long will be returned; For a single value container, the retuned object may be of 
the following types: Long, Double, String in case of multi-value containers, the returned 
object may be of the following type: Long[], Double[], String[].  

5.3 T WAIN & JTwain Mapping 
 

5.3.1 Containers 

TWAIN      JTWAIN  
TW_ONEVALUE   ValueContainerOneValue 
TW_ARRAY    ValueContainerArray 
TW_ENUMERATION  ValueContainerEnumeration 
TW_RANGE    ValueContainerRange 
 

5.3.2 Item Types 

TWAIN     JTWAIN 
TW_BOOL   ItemTypeInteger(TWTY_BOOL, value[1 or 0]) 
TW_INT8   ItemTypeInteger(TWTY_INT8, value) 
TW_INT16   ItemTypeInteger(TWTY_INT16, value) 
TW_UINT32   ItemTypeInteger(TWTY_UINT32, value) 

 
Page 22 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

TW_FIX32   ItemTypeFix32(value) 
TW_STR32   ItemTypeString(TWTY_STR32, value) 
TW_STR1024  ItemTypeString(TWTY_STR1024, value) 
TW_FRAME   ItemTypeFrame  

 
Page 23 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

6 Advanced Topics 

6.1 Exception Handling 
According to TWAIN specification, a data Source does not have to support all the 
capabilities. Further more, there are some poor designed TWAIN Sources which are 
not TWAIN-compatible. Exceptions could be thrown everywhere especially in the 
middle of getting/setting capabilities.  
 
Asprise JTwain package has been carefully designed to relieve developers from 
handling complicated multiple exceptions. By default, a minimum set of exceptions will 
be thrown. To enable a Source to throw all possible exceptions, one can enable or 
disable this minimum exception option by executing the following code:  
 
1. source.setMinimumExceptionEnabled(true);  // Only a minimum set of  

exceptions will be thrown. By default, minimum exception is enabled. 

 

2. source.setMinimumExceptionEnabled(false); // Throw as many as 

possible exceptions. 

 
The “minimum set of exceptions” does not include exceptions thrown during capability 
getting/setting. Most of critical exceptions are included in this minimum exception set.  
 
Note that although minimum exception option can be turned on, the developer still has 
to write code to catch exceptions – there could be some exceptions to be thrown, 
although just a minimum set.  
 
A typical exception handling example:  
 
1.  try { 

2.      Source source = SourceManager.instance().getDefaultSource(); 

3.      source.open(); 

4.      source.setXResolution(999); // Invalid value! 

5.     

6.      Image image = source.acquireImage(); 

7.     

8.      new ImageDisplayer("DemoSimple", image); 

 
Page 24 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

9.     

10. }catch(Exception e) { 
11.     e.printStackTrace(); 
12. }finally{ 
13.     SourceManager.closeSourceManager(); 
14. } 

 
Note that line 4 set the capability ICAP_XRESOLUTION to value 999 – very likely an 
invalid value (typical resolution values are 72, 300, 600, etc). Even if the Source does 
not support this capability or it rejects the value setting request, no exception will be 
thrown – because minimum exception option is on by default. The image will be 
acquired using Source's default resolution.  
 
If this capability is very important, one can turn off minimum exception option by 
inserting the following line before line 4:  
 
1. source.setMinimumExceptionEnabled(false) 

 
Browse any of the demo programs to see exception handling at work.  
 
If the user cancels scanning during single image acquisition, Source's acquireImage 
will throw a JTwainException exception.  

6.2 Using JTwain in Threads 
The TWAIN is not thread-safe, its Java counterpart, JTwain inherits the same property.  
Once a Source has been opened, it has to be used in the same thread until it is closed. 
If a Source is used in application's main thread, a fatal error in native method will be 
generated if AWT or Swing event handling thread tries to access it.  
 
To avoid fatal errors, always call SourceManager.instance().close() at the end of image 
acquisition. 
 

6.3 Software Packaging and Distribution 
So you have successfully developed your Java applications with JTwain. It's time to 
distribute your programs to end users. First, make sure you are an authorized licensee 
registered with LAB Asprise!. To purchase a license, please visit: 
http://www.asprise.com/product/jtwain  

 
Page 25 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

 
There are two files about JTwain you need to distribute along with your own binary 
code. One is JTwain.jar, which is like any other java library, you can just copy it and put 
it in the class path. The other one is AspriseJTwain.dll, the native library. There are 
many ways to 'install' this dll file, you can:  
 
Add the folder containing the native library to the system path, or 
Copy the native library to jre/bin directory – 'install' the library to the JVM, or 
Copy the native library to a specific location, e.g. C:\AspriseJTwain.dll, before calling 
SourceManage.instance(), call: 
SourceManage.setLibraryPath(“ C:\AspriseJTwain.dll ”); 

 
Page 26 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

7 Deployment Guide 

Jar files are the recommended java binary code distribution format. This section will 
guide you to put *.class files into jar file. 

7.1 Organizing your directory 
It is important to organize your project directory properly first. Let’s say you have the 
following Java class: 
 

2. package com.asprise.test; 
3. ... 
4. public class TestUI extends JApplet { 
5.  
6.  public TestUI() { 
7.   getContentPane().setBackground(Color.pink); 

8.   getContentPane().setLayout(new BorderLayout()); 

9.   JLabel label = new JLabel("Testing Message."); 

10.   label.setHorizontalAlignment(JLabel.CENTER); 

11.   getContentPane().add(label, BorderLayout.CENTER); 

12. ... 
13.  } 
14.  
15.  
16.  public static void main(String[] args) { 
17.   JFrame frame = new JFrame("TestUI"); 

18.   frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

19.   frame.getContentPane().add(new TestUI()); 

20.   frame.setSize(400, 300); 

21.   frame.setVisible(true); 

22.  } 
23. } 

 
The class name is TestUI and it is in package com.asprise.test. 
 
For this class you should organize the directory as following:  
 

 
Page 27 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

 
 
[Assuming TEST is your root folder. The absolute path of TEST is 
E:\eclipse-301\workspace\TEST] 

7.2 Creating a Jar File 
Now, you change directory to the classes folder, and type the following command to put 
all the files in the classes directory into a jar file named program.jar.1

 
E:\eclipse-301\workspace\TEST\classes>jar cvf program.jar * 

 
Now, all the files in the classes directory has been put into: 
E:\eclipse-301\workspace\TEST\classes\program.jar 
 
Now, move the program.jar to the E:\eclipse-301\workspace\TEST folder. 
 
E:\eclipse-301\workspace\TEST\classes>move program.jar .. 

 
Note: If your class is in the default package (i.e., you did not specify any package 
information in the source code), you should put it in the classes folder. Otherwise, you 
should create the corresponding package directory under the classes folder and put 
the class file into the package directory as shown above. 
 

7.3 Creating Signed Applets 
Only signed applets can be granted with all the permissions. To enable an applet to 
access dll files (e.g., JTwain) or other native services, you need to sign the all the jar 
files required by the applet with the same certificate. This section provides a 
step-by-step guide. 
 
First, if you have .class files, make sure you put them into a jar as shown in the first 

                                                 
1 In this document, we use Microsoft Windows as the hosting OS. You can easily convert the commands 
onto other platforms, like Mac OSX, Linux, etc.  

 
Page 28 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

chapter. 
 
In our sample project, we have a jar named program.jar containing our program binary 
class files. We also have a library file named JTwain.jar: 
 

 

7.3.1 Creating a Certificate 

Before you can sign jar files, you need a certificate. If you already have one, you can 
skip this procedure. 
 
First, change directory to the root directory of the project: 
E:\eclipse-301\workspace\TEST 
 
Run the following command:  
 
E:\eclipse-301\workspace\TEST>keytool -genkey -dname "cn=YOUR NAME, 

ou=ORG UNIT, o=COMPANY, c=US" -alias test -keypass testpass -validity 999 

-keystore test -storepass testpass 

 
A file named test containing the certificate is generated under the TEST folder.  

7.3.2 Signing Jar Files 

Use the following command to sign each jar file: 
 
E:\eclipse-301\workspace\TEST>jarsigner -keystore test -storepass 

testpass -keypass testpass program.jar test 

 

E:\eclipse-301\workspace\TEST>jarsigner -keystore test -storepass 

testpass -keypass testpass JTwain.jar test 

 

... 

 

 
Page 29 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

Now, all the jar files have been signed. You can launch the applet with a proper HTML 
page. 

7.3.3 Launching the Applet 

Now, you can use HTML code like the following to invoke the applet: 
 

1. <html>  

2. <head> 
3. <title>TestUI</title> 
4. </head> 
5. <body> 
6. <h1>Signed Applet Testing</h1> 
7. <h3><a href="http://asprise.com">All Rights Reserved by LAB 

Asprise!</a></h3> 

8.  
9. <applet code="com.asprise.test.TestUI.class" codebase="." 

archive="program.jar, JTwain.jar" width="400" height="300"> 

10. Oops, Your browser does not support Java applet! 
11. </applet> 
12.  
13. </body> 
14. </html> 

 
The screenshot: 
 

 
 

 
Page 30 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

8 Image Acquisition Components 

The image acquisition UI components are not part of Asprise OCR library. However, 
based on our customers' experience, if you need to build a front-end for OCR, they are 
invaluable and could save you a lot of time. Otherwise, you may skip this chapter. 

8.1 JImageDialog 
JImageDialog is an image acquisition UI component that allows the user to load 
images and to perform basic image editing tasks. If you are developing some 
applications that require the user to select/edit/input images, then JImageDialog will 
make your life extremely easy – and more importantly, the user experience will be 
improved dramatically.  
 

 
 
 
Let say you want to build an album application, the user is required to supply photos 

 
Page 31 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

(i.e. images). You put a button on your panel. When the user click the button, 
JImageDialog is brought up – now the user can select existing pictures files from his or 
her computer or acquire images from digital cameras or scanners. And the user can 
edit images before putting it into the album.  

8.1.1 Advantages 

♦ Multiple image sources supported: local computer, digital cameras, scanners and 
the web; 

♦ Multiple image formats: read and write BMP, PNG, JPG, GIF, PCT, PSD and many 
other formats; 

♦ Platform/Virtual machine independent: Any platform, any Java virtual machine 
(version 1.3 or above); 

♦ Powerful features: rotation, flipping, scaling, clipping, etc.  
♦ User friendly as well as developer friendly 
 
The user can load images from local computer or the web, he or she can also acquire 
images from digital cameras and scanners. After the image has been loaded, the user 
can rotate, clip, flip, and scale the image. The image has been loaded and edited, the 
user can save the image or select the image - which will be used in your applications.  
 

8.1.2 Sample Uses 

8.1.2.1 Modal (synchronous) mode  

15. JImageDialog dialog = new JImageDialog(frame, "Sample", true); // 
Modal dialog 

16. BufferedImage image = dialog.showDialog(); 
17. ...  

 
Line 1 constructs the image dialog.  
Line 2 brings up the image dialog and waiting for user's selection/acquisition.  
 
Besides using JImageDialog in synchronous mode, you can also use it in:  
 

 
Page 32 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

8.1.2.2 Asynchronous mode  

18. public class JImageDialogSample extends JPanel implements 
JImageDialogListener { 

19.   ... 
20. BufferedImage image;  
21.    
22. // Displays selected image if any.  
23. public void paintComponent(Graphics g) { 
24.      super.paintComponent(g); // Paint background.  
25.      if(image != null) 
26.           g.drawImage(image, 0, 0, null); 
27. } 
28.  
29. // Sets image and refreshes the panel. 
30.      public void setImage(BufferedImage image) { 
31.      this.image = image; 
32.     setPreferredSize(getPreferredSize()); 
33.      revalidate(); 
34.      repaint(); 
35. } 
36.   
37. // Methods in JImageDialogListener 
38. // When the user presses cancel button, this method will be called.  
39. public void onCancel() {  
40.      setImage(null); 
41.   } 
42.      
43. // When the user presses the selection button, will be invoked.  
44. public void onImageSet(BufferedImage image) { 
45.      setImage(image); 
46. } 
47. } 
48.  
49. ... 
50. JImageDialogSample imagePanel = new JImageDialogSample(); 
51.   
52. JImageDialog dialog = new JImageDialog(); 
53. dialog.addImageDialogListener(imagePanel); 
54. dialog.showDialog(); 

 
Line 1-30 implements a JimageDialogListener.  
Line 33 constructs the listener. 

 
Page 33 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

Line 35 constructs the dialog. 
Line 36 registers the listener the dialog  
Line 37 brings up the dialog 
 
When the user acquires an image and selects it, JimageDialog's listeners will be 
notified. In this case, imagePanel.onImageSet(BufferedImage image) will be called 
and thus the panel will display the selected image. If the user cancels the selection, 
onCancel() will be called instead.  
 
Sample application: com.asprise.util.ui.JImageDialogSample 
 

8.1.3 Supported Image Formats 

 
The following table shows image formats supported by JImageDialog:  
 

Formats File extensions READ WRITE 
Adobe Photoshop *.psd Y Y 
Bitmap, Windows/OS2  *.bmp, *.dib Y Y 
Cursor *.cur Y  
Graphics Interchange Format *.gif Y  
Icon *.ico Y  
JPEG *.jpg, *.jpeg Y Y 
Macintosh PICT Format  *.pict, *.pct Y Y 
PCX Format *.pcx Y Y 
Portable Network Graphics  *.png Y Y 
Sun Raster Format *.ras Y  
Tag Image File Format  *.tif, *tiff Y  
Targa *.tga Y Y 
X Bitmap *.xbm Y Y 
X PixMap *.xpm Y Y 

 
On any Java platforms (version 1.3 or above), JImageDialog supports the above 
formats (using its own library to read/write image files). JImageDialog intelligently 
selects the best way to read or write files – e.g. on Java 1.4, it may invoke ImageIO to 
see whether a file can be read or written; if the ImageIO can do the job then 
JImageDialog will let it do; otherwise, JImageDialog will use its own library to access 
the file.   
 
Note: You can only read/write image files from the JImageDialog UI component with 
unlicensed image acquisition UI component package. If you want to access image files 

 
Page 34 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

from your Java code and/or to perform other advanced operations, you need to obtain 
an affordable license from LAB Asprise!. 
 

8.1.4 Compatibility 

All Java runtimes with version 1.3 or above.  
 

8.1.5 Software Packaging and Distribution 

Mandatory:   jid.jar, JTwain.jar 
 

8.2 JImageFileChooser 
JImageFileChooser is an extended JFileChooser that supports image preview and 
image information extraction.  
 

 
 

When the user clicks an image file, its preview and associated information will be 
displayed to assist the user to select the proper image.  
 
 
 

 
Page 35 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

8.2.1 Sample Use 

55. JFileChooser fc = new JImageFileChooser(lastDirectory); 
56. fc.addChoosableFileFilter(JImageFileChooser.getImageFileFilter()

);  

57. int returnVal = fc.showOpenDialog(frame); 
58. ... 

 
Line 1 creates the image file chooser; 
Line 2 set the file filter.  
 
You can use it as normal JFileChooser, and it improves the user experience greatly.  
 

8.2.2 Supported Image Formats 

Please refer to Supported Image Formats in JImageDialog section.  
 
Note: You can only preview image files from the JImageFileChooser UI component 
with unlicensed image acquisition UI component package. If you want to read/write 
image files from your Java code with the package and/or to perform other advanced 
operations, you need to obtain an affordable license from LAB Asprise!. 
 

8.2.3 Compatibility 

All operating systems; 
All Java runtimes with version 1.2 or above.  
 

8.2.4 Software Packaging and Distribution 

Mandatory:   jid.jar 
 
 
 

 
Page 36 of 37 



LAB Asprise!  Asprise JTwain Developer’s Guide 

9 Support and professional 

services 

9.1 Support Web Site 
http://www.asprise.com/product/jtwain  

9.2 Basic Support 
Our team provides basic support for general Asprise JTwain developers. Email your 
technical questions to support@asprise.com 
 
Advice:  You are strongly recommended to subscribe our premium support service in 
order to get your problems solved quickly.  

9.3 Premium Support Services 
Free fixed period of premium support services subscription comes with every license 
purchased. You may optionally extend premium support services after your 
subscription expires. For more details, visit the order page.  

9.4 Professional Services 
Our team are ready to help you to develop various applications, components. Please 
send your query to info@asprise.com 

 
Page 37 of 37 


	1 Introduction 
	1.1 About TWAIN 
	1.2 About JTwain 
	1.3 Components of JTwain 
	1.4 JTwain SDK Installation 
	1.5 File Organization  
	1.6 Development Environment Setup 
	1.7 Compatibility 
	2 Image Acquisition with JTwain 
	2.1 For the Impatient 

	3 Control Flow of a Typical Image Acquisition Process 
	3.1 Getting a Source  
	3.1.1 Gets the default Source 
	3.1.2 Lets the user select a Source  
	3.1.3 Selects source by its name 
	3.1.4 Get all the Sources available 
	3.1.5 Validating a Source:  

	3.2 Hiding the User Interface 
	3.2.1 Hiding the “Select Source” UI:  
	3.2.2 Hiding the scanner/digital camera's acquisition UI: 
	3.2.3 Hiding the indicators' UI: 

	3.3 Setting and Getting Source Capabilities 

	4 Acquiring Images 
	4.1 Automatic Document Feeding (ADF) 
	4.2 Saving Acquired Images into Files 
	4.2.1 Built-in Image Saving Functions 
	4.2.2 Sample Code 

	4.3 Acquiring a Specified Region Only 
	4.4 Uploading Acquired Images to Web Servers 
	4.5 About the JTwain Web Applet 

	5 Low level API Programming 
	5.1 JTwain API Model 
	5.2 Extending the Source 
	5.3 TWAIN & JTwain Mapping 
	5.3.1 Containers 
	5.3.2 Item Types 


	6 Advanced Topics 
	6.1 Exception Handling 
	6.2 Using JTwain in Threads 
	6.3 Software Packaging and Distribution 

	7 Deployment Guide 
	7.1 Organizing your directory 
	7.2 Creating a Jar File 
	7.3 Creating Signed Applets 
	7.3.1 Creating a Certificate 
	7.3.2 Signing Jar Files 
	7.3.3 Launching the Applet 


	8 Image Acquisition Components 
	8.1 JImageDialog 
	8.1.1 Advantages 
	8.1.2 Sample Uses 
	8.1.2.1 Modal (synchronous) mode  
	8.1.2.2 Asynchronous mode  

	8.1.3 Supported Image Formats 
	8.1.4 Compatibility 
	8.1.5 Software Packaging and Distribution 

	8.2 JImageFileChooser 
	8.2.1 Sample Use 
	8.2.2 Supported Image Formats 
	8.2.3 Compatibility 
	8.2.4 Software Packaging and Distribution 


	9 Support and professional services 
	9.1 Support Web Site 
	9.2 Basic Support 
	9.3 Premium Support Services 
	9.4 Professional Services 



